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Nonlinear rotating modes: Green’s-function solution
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Lattice Green’s functions are used to investigate localized rotating modes recently exhibited in some non-
linear lattices. For a one-dimensional lattice, analytical expressions of the solution are obtained, first in the
rotating-wave approximation and then by including higher-order terms. Numerical simulations confirm the
validity of these solutions. The method is not restricted to one-dimensional lattices.@S1063-651X~97!03202-9#
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I. INTRODUCTION

The recent surge of interest in nonlinear energy locali
tion in homogeneous discrete lattices@1–3# has attracted at
tention on localoscillatory modes, or discrete breather
They appear even more ubiquitous than the solitons@4# be-
cause they do not have a threshold energy and thus br
the gap between the linear phonon modes and the hi
nonlinear modes. Moreover, in some systems, disc
breathers are easily thermally activated@5,6# so that they are
likely to be physically relevant. MacKay and Aubry hav
recently proved that breathers are exact solutions of non
ear lattices if the intersite coupling is below a thresho
which depends on the amplitude of the mode@7#.

But oscillatory modes are not the only nonlinear localiz
modes. In lattices of coupled rotators we recently exhibi
rotating modes@8# in which a central rotator performs
monotone increasing rotation while its neighbors oscill
around their equilibrium positions. In the phase space of
system, the motion of the central site and the motion of
neighbors lie on opposite sides of a separatrix. As a resul
rotating modes are intrinsically discrete. There is no smo
way to go from a full rotation to an oscillation. The theore
of MacKay and Aubry@7# can be extended to show th
rotating modes can be exact solutions of the coupled-rot
equations of motions, and numerical investigations of
thermalization of the rotator lattice@8# show that, like the
breathers, the rotating modes can be thermally exci
Moreover, while it is very easy to thermally excite rotatin
modes that involve one or a few lattice sites, nonlocaliz
rotating modes are not observed unless one reaches very
temperatures because they have a very large energy. Thi
sharp contrast with oscillatory modes for which the non
calized counterparts, i.e., oscillatory waves, or phonons,
easily found. As a result, in physical systems, such as pla
crystals, where rotations have been found experiment
@9,10#, it seems very likely that they correspond to localiz
rotating modes. This is why it is important to have a ma
ematical description of these modes.

However, due to the specificity of the rotating mode
getting an analytical solution turns out to be much mo
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difficult than for oscillatory modes because there is a qu
tative change between the motion of the central site and
oscillations of the others. This precludes any continu
limit, and different functions must be used to describe
dynamics of different sites. In a previous work@8#, we
showed how an approximate solution could be derived. N
merical checks have indicated that this solution was rat
good because it treated intrinsically the discreteness of
lattice. However, the method that we used was strictly li
ited to a one-dimensional lattice. We present here a solu
based on lattice Green’s function. The numerical solut
that can be deduced from the analytical expressions give
the Green’s functions is slightly better than the previous o
but, more importantly, the method is not restricted to on
dimensional lattices and can be formally extended to two
three dimensions, although the calculations could beco
involved. Section II presents the model and the solution
rived in the rotating-wave approximation. Section III go
beyond this approximation and discusses the results.

II. MODEL AND GREEN’S-FUNCTION SOLUTION
IN THE ROTATING-WAVE APPROXIMATION

We consider the one-dimensional sine-lattice equation

J@sin~un112un!2sin~nn2un21!#2
d2un
dt2

5gsinun , ~1!

whereun is the field variable associated to thenth site of the
lattice, andJ, g are constants. This set of equations descri
the dynamics of a chain of coupled rotators~pendula or mol-
ecules in a plastic crystal! with Hamiltonian

H5(
n

H I2 S dundt D 21K@12cos~un112un!#

1V@12cosun#J , ~2!

where I is the moment of inertia of a rotator,K andV the
magnitude of the coupling and on-site potentials, w
1922 © 1997 The American Physical Society
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55 1923NONLINEAR ROTATING MODES: GREEN’S-FUNCTION . . .
J5K/I and g5V/I . One should notice that, instead of th
usual harmonic coupling between sites, we consider he
sinusoidal coupling which is relevant, for instance, for dip
lar interactions. This is a crucial property of the model b
cause it allows for the existence of localized rotating mod
The monotonous rotation of a single site, while the neighb
oscillate, does not cause a permanent buildup of coup
energy. Moreover, as the coupling potential is bounded,
rotating modes are highly localized for allJ/g. This deter-
mines the approach that can be used to look for a soluti

Let us rewrite Eq.~1! under the form

d2un
dt2

52@g1J~cosun111cosun21!#sinun

1Jcosun@sinun111sinun21# . ~3!

Equation ~3! can be viewed as a modified version of t
equation of motion of thenth pendulum with an effective
frequency

v0*5@g1J~cosun111cosun21!#
1/2 , ~4!

coupled to its neighbors by an effective coupling constan

J*5Jcosun . ~5!

Let us look for a particular solution in which a single rotat
~say,n50) undergoes a rotational motion while the othe
oscillate. This means that

uu0u@uunu for unu>1 . ~6!

As we expect a highly localized solution, we preserve
full nonlinearity of the equations for the central site on
while the other equations are linearized around the equ
rium position, which yields

d2u0
dt2

52v0
2sinu01J~u11u21!cosu0 , ~7a!

d2u61

dt2
52@g1J~11cosu0!#u611J@u621sinu0# ,

~7b!

d2un
dt2

52v0
2un1J~un111un21!, unu>2 , ~7c!

wherev05Ag12J is the eigenfrequency of a single pend
lum in the small amplitude limit.

Let us look for a solution of this set of equations under
form

u05v0,0 t1(
r51

`

v0,rsin~rvt ! , ~8a!

un5(
r51

`

vn,rsin~rvt ! for unu>1 . ~8b!

This expression is chosen to match the type of motion
we are looking for. The central rotator is expected to beh
almost like a free rotating pendulum, i.e., rotate with an
a
-
-
s.
rs
g
e

.

e

-

e

at
e
-

erage velocityv0,0, modulated by the on-site potential whic
tends to favor the positionsu050 ~mod 2p), while the other
sites will be driven to oscillate around equilibrium at a fr
quency imposed by the central rotator. It is also conveni
to express sinu0 and cosu0 as

sinu05(
r51

`

S0,rsin~rvt ! , ~9a!

cosu05C01(
r51

`

C0,r8 cos~rvt ! . ~9b!

The coefficientsvn,r , C0, C0,r8 , S0,r (n50,61,62, . . . ,
6`, r51, . . . ,̀ ) andv are parameters to be determine
Inserting Eqs.~8! and ~9! into the equations of motions~7!
we get a set of equations that couple these parameters.
first step we confine ourselves to the ‘‘rotating-wave a
proximation,’’ often used to derive breather modes, wh
amounts to retaining only the leading terms, i.e., the terms
to r51. We obtain

v2v0,15v0
2S0,12JC0~v1,11v21,1! , ~10a!

v2v61,15v61,1@g1J~11C0!#2J~S0,11v62,1! , ~10b!

v2vn,15v0
2vn,12J~vn11,11vn21,1! , unu>2 . ~10c!

In the remainder of this section we drop the second subsc
1 (vn,1 ,S0,1 will be denoted asvn ,S0, respectively! to sim-
plify the notation since onlyr51 is considered in the
rotating-wave approximation.

The set of equations~10! for vn is equivalent to the equa
tions that one would derive for a linear homogeneous lat
@described by Eq.~10c! for all n#, subjected to externa
forces represented byv0, C0, S0. If the forcing terms are
known, thevn can be calculated with the lattice Green
functionsG(n,v) solutions of

~v22v0
2!G~n,v!1J@G~n11,v!1G~n21,v!#5d~n! .

~11!

The Green’s functions have been calculated for many latt
@11,12#. Consequently the calculations presented here fo
one-dimensional lattice can be formally extended to hig
dimensions although they could become tedious. Fo
N-particle one-dimensional lattice with periodic bounda
conditions,G(n,v) is given by

G~n,v!5
1

N(
q

einq

v22v0
212Jcosq

5
2

N (
q>0

cosnq

v22v0
212Jcosq

, ~12!

where the wave vectorq belongs to the first Brillouin zone
(q52kp/N, 2N/2,k<N/2). In the limit of largeN, the
discrete sum overq can be replaced by an integral

G~n,v!5
1

p~v22v0
2!
E
0

p cosnq

11acosq
dq , ~13!
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1924 55SHOZO TAKENO AND MICHEL PEYRARD
with a52J/(v22v0
2).

A localized solution, i.e., a Green’s function such th
uGu→0 if unu→` exists only ifa2,1. This defines the al-
lowed frequenciesv, which must lie outside of the phono
band v0

2(q)5v0
222Jcosq, i.e., v2,vm

2 5v0
222J or

v2.vM
2 5v0

212J. We denote, by G2(n,v) and
G1(n,v), the expressions of the Green’s function in the lo
and high frequency range, respectively. Using the value@13#
of the integral~13!, they can be written as

G6~n,v!56
~71! unuexp~2zunu!

2Jsinh~z!
with z.0,

z5cosh21S 6
v22v0

2

2J D . ~14!

Separating in Eqs.~10a! and~10b! the part corresponding to
the perfect lattice described by Eq.~10c! from the extra con-
tributions, and according to the properties of the Gree
function for linear equations, one can express the respo
vn to these extra contributions at sites 0,11,21 as

vn5G6~n,v!@v0
2~S02v0!2J~C021!~v11v21!#

1G6~n21,v!@J~C021!v12J~S02v0!#

1G6~n11,v!@J~C021!v212J~S02v0!# ,

~15!

where the appropriate Green’s functionG6 has to be chosen
according to the frequencyv. Taking into account the defi
nition ~11! of the Green’s function, we obtain

vn5~S02v0!@v2G6~n,v!2d~n!#

1~12C0!v1@~v22g!G6~n,v!2d~n!# . ~16!

For n51, Eq. ~16! determinesv1 as a function of the prop
erties of the central rotator

v15
~S02v0!v

2G6~1,v!

12~12C0!~v22g!G6~1,v!
. ~17!

Inserting Eq.~17! into Eq.~16! for nÞ0, we obtain an equa
tion giving the spatial localization of the nonlinear rotatin
modes

vn5
v2G6~n,v!~S02v0!

12~12C0!~v22g!G6~1,v!
. ~18!

The same calculation forn50 gives a relation betweenv
and the parametersS0 and v0 that characterize the centra
site according to Eqs.~8! and ~9!,

S0
v0

5
v2@G6~0,v!1AG6~1,v!#

v2G6~0,v!211Av2G6~1,v!
~19!

with

A5
~12C0!@~v22g!G6~0,v!21#

12~12C0!~v22g!G6~1,v!
. ~20!
t

’s
se

Within the rotating-wave approximation, Eqs.~17!–~20!
determine completely the dynamics of the lattice for anyn
Þ0 as a function of the motion of the central siten50. If
they are combined with the Eq.~7a!, they give a self-
consistent set of equations which can be used to obtain
rotating mode solution. The analytical solution of this set
equations is, however, difficult to derive and it might b
meaningless to look for an exact solution while we ha
made approximations, such as the partial linearization of
original equations and the rotating-wave approximation.
the same level of accuracy, one can drop the last term of
~7a! which amounts to assuming that the large amplitu
motion of the central site is not perturbed by the small vib
tions of the neighboring sites. The central rotator is sim
described by

d2u0
dt2

1v0
2sinu050, ~21!

which has an exact solution in terms of elliptic functio
@14#. For a given lattice, the nonlinear rotating mode is
one-parameter excitation. It is convenient to characteriz
by the angular velocityV0 of the central rotator at its equi
librium positionu050. The solution of the rotating pendu
lum is then

sin
u0
2

5snS V0

2
t,k D or u0~ t !52amFV0

2
t,kG , ~22!

where the modulusk of the Jacobi elliptic functions sn an
am is equal to

k52v0 /V0,1. ~23!

From this expression ofu0, we can determine all the nece
sary parameters to getun(t) for anynÞ0. The Fourier series
expansion of the amplitude elliptic function@15# gives the
expansion~8a! of u0,

u05
pV0

2K
t14(

r51

`
qr

r ~11q2r !
sinr

pV0

2K
t, ~24!

whereK(k) is the elliptic integral of the first kind,K8 is the
associated elliptic integral K85K(A12k2), and q
5exp(2pK8/K). Equation~24! gives v054q/(11q2). The
expression of sinu0 is easily derived from Eq.~21! and ex-
pansion~24!

sinu05(
r51

` S 2p

kK D 2 rqr

r ~11q2r !
sinr

pV0

2K
t, ~25!

so thatS05(2p/kK)2q/(11q2), S0 /v05(p/kK)2. Finally
cosu0 is derived from the Fourier series of sn@(V0t/2),k#. Its
constant termC0 is

C0512S 2p

kK D 2 (
m50

`
q2m11

~12q2m11!2

512S p

kK D 2 (
m50

`
1

sinh2@~2m11!pK8/2K#
. ~26!

IntroducingS0 /v0 andC0 into Eqs.~19! and ~20! defines a
relation between the frequencyv of the rotating mode and
V0. One should notice that, although we have deducedS0,
v0, C0 from an analytical expression foru0(t), Eq. ~22!,
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55 1925NONLINEAR ROTATING MODES: GREEN’S-FUNCTION . . .
valid for a central rotator uncoupled to the rest of the latti
we do notassume that the frequency of the rotating mode
simply the angular frequency of the isolated rotator as we
in our previous work@8#. The rotating mode is a one
parameter solution which can be characterized by the v
of V0. The value ofv, obtained by solving Eq.~19! for a
givenV0 takes into account the coupling to the other sit
The shape of the rotating mode away from the central sit
given by the valuesvn which are completely determined b
Eq. ~18!, oncev is known. From Eq.~18! and expression
~14!, we get

vn56
v2

2Jsinhz

4q

11q2 F S p

kK D 221G
3

1

12~12C0!~v22g!G6~1,v!
~71! unue2zunu. ~27!

To complete the determination of the solution defined by
~8! in the rotating-wave approximation, one can obtainv0,0
from the relationV05v0,01vv1, deduced from the expres
sion of the velocity of the central site at timet50. Figure 1
shows the extrema of oscillation,vn (nÞ0), of the rotators
for the parametersJ51, g52 and two values of the fre
quency of the rotating mode,v51.264 91 which belongs to
the low frequency range andv53.033 15 in the high fre-
quency range. The amplitude of the vibrations away from
central rotating site decays asrn with

r57e2z5
1

2J
@g12J2v27A~g12J2v2!24J2# .

~28!

This decay rate is the same as the one obtained in the p
ous solution@8# because it is determined by the properties
the linearized lattice. Except whenv is in the immediate
vicinity of the phonon band (v'vm in the low frequency
range orv'vM in the high frequency range, which corre
spond to unstable solutions@8#! wherer approaches 1, the
rotating modes are highly localized excitations, as shown
Fig. 1. In the high frequency range, the sign of thevn’s
alternates, which corresponds to the usual ‘‘optical’’ char
ter of modes above the top of the phonon band.

The validity of the solution has been tested by numeri
integration of Eqs.~1! with an initial condition obtained from
Eqs. ~22! and ~27!. The integration is performed with
fourth-order Runge-Kutta scheme and a time step chose
preserve the total energy to an accuracy of 1026 for the total
time interval investigated. The results are plotted in Fig.
The energy density

en5
1

2 S dundt D 21 1

2
J@22cos~un112un!2cos~un2un21!#

1g@12cosun# ~29!

shows a sharp peak around the center of the rotating m
During one period of the mode there is an exchange betw
the kinetic energy~maximum when the central rotator is
the positionu050) and the potential energy, which is a
companied by a small oscillation of the width of the ener
density peak. Simultaneously the amplitude of the peak
cillates to conserve the total energy, i.e., the area under
peak. While Fig. 2~a!, for the energy density, seems to ind
cate an almost exact solution, the plot of the angular velo
,
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ties of the rotators shows that the initial condition radia
small amplitude waves away from the center, i.e., the so
tion is not exact. This is not surprising since it has be
obtained in the rotating-wave approximation which negle
all high frequency terms. The case that we have chosen
Fig. 2 is one example where the limitations of the Gree
function solution show up clearly. Higherg/J ratio, which
gives more localized solutions, shows that the solution is
fact rather good. However, Fig. 2 points out the interest
going beyond the rotating-wave approximation.

III. BEYOND THE ROTATING-WAVE APPROXIMATION

The next approximation is to keep terms up to the f
quency 2v in the analysis of Eqs.~7!, and to identify the
factors of sinvt and sin2vt. The sinvt terms give again the
set of equations~10!, and the sin2vt terms give the addi-
tional equations

4v2v0,25v0
2S0,22J

C0,18

2
~v1,11v21,1!2JC0~v1,21v21,2! ,

~30a!

4v2v61,25v61,2@g1J~11C0!#2J~S0,21v62,2!

1J
C0,18

2
v61,1 , ~30b!

FIG. 1. Extrema of oscillation,vn (nÞ0), of the off-center
rotators forJ51, g52, andv51.264 91~a! low frequency range
andv53.033 15~b! high frequency range.
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1926 55SHOZO TAKENO AND MICHEL PEYRARD
4v2vn,25v0
2vn,21J~vn11,21vn21,2! , unu>2 .

~30c!

This new set of equations couples thevn,1 and vn,2 terms.
However, as thevn,2 terms do not appear in Eqs.~10! which
give the leading contribution to the solution, Eqs.~10! can be
solved as before andvn,1 is still given by the solution~27!.
Then, to calculatevn,2 (nÞ0), the set of equations~30b! and
~30c! can be treated as a set of linear equations forced by
external termsS0,2 andv61,1, which are known. It should be
noticed that such a treatment of the equations is not f
self-consistent because it does not guarantee that Eq.~30a!
will be exactly satisfied becausev is only determined by the
lowest order set of equations~10!. This is a limitation of the
method which is inherent in our approach, which does
treat the central rotator and the remaining sites on an e

FIG. 2. Time evolution of an initial condition given by Eqs.~22!
and ~27! for g52, J51, v53.033 15.~a! Energy densityen . ~b!
Angular velocities of the rotators. The amplitudes oscillate with
period of the rotating mode. The slow oscillation observed on
figure is an artifact due to a stroboscopic effect generated by
finite sampling time~much larger than the integration time ste!
which is necessary to generate a clear three-dimensional figur
he

y

t
al

footing. It is justified by the fundamental difference betwe
the large amplitude motion at the central site, which tends
drive the other rotators, and the small vibrations of the
maining sites. The validity of the approach is confirmed
the numerical tests of the solution.

Solving Eqs.~30! with the Green’s function of the linear
ized lattice, which are the same as the functions calcula
above simply taken for the frequency 2v instead ofv, gives

vn,25G6~n,2v!Fv0
2~S0,22v0,2!2J~C021!~v1,21v21,2!

2J
C0,18

2
~v1,11v21,1!G1G6~n21,2v!FJC0,18

2
v1,1

1J~C021!v1,22J~S0,22v0,2!G1G6~n11,2v!

3FJC0,18

2
v21,11J~C021!v21,22J~S0,22v0,2!G .

~31!

For the terms at frequency 2v, Eq. ~31! corresponds to Eq
~15! derived above for the terms at frequencyv. As the
v61,1 terms are known from the lowest order solution, E
~31! can be treated exactly as Eq.~15!, except thatv is taken
from the value determined above.

For the numerical tests of this solution including the 2v
corrections, we have, however, used a simplified version
Eq. ~31! by dropping thev61,1 contributions, i.e., assuming
C0,18 50. This greatly simplifies the calculations and the n
glected terms are, in fact, extremely small. It is easy to
derstand why when one looks at their physical origin. T
vn,2 terms are the response of the lattice to the 2v term in the
central rotator motion, which is not small, and to a 2v con-
tribution resulting from the nonlinear coupling between t
central rotator and the vibration of the61 sites. This second
factor is small because, as shown above, the vibrations a
from the center have a very small amplitude. Therefore,
glecting this higher order term is justified. Looking at E
~31! with C0,18 50, one can see that it is then exactly identic
to Eq.~15!. It means thatvn,2 is simply given by Eq.~18! and
Green’s function calculated for the frequency 2v, i.e.,

vn,25
4v2G6~n,2v!~S0,22v0,2!

12~12C0!~4v22g!G6~1,2v!
, ~32!

which can easily be evaluated by replacingS0,2 andv0,2 by
their values taken from expansions~25! and ~24!. In doing
this evaluation, one should take care to use the approp
Green’s functionG6 . The choice betweenG2 andG1 is
now determined by the value of 2v. For high frequency
rotating modes,v being above the phonon band, this is al
true for 2v and the functionG1 can be used both forvn,1
andvn,2 . But, for low frequency modes, it may happen th
v is below the phonon band, i.e.,vn,1 is calculated with
G2 , but 2v is above the phonon band andG1 has to be
used forvn,2 . Of course 2v could fall into the phonon band.
In this casevn,2 would be determined by anonlocalized
Green’s function. This means that the energy of the cen

e
e
e
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55 1927NONLINEAR ROTATING MODES: GREEN’S-FUNCTION . . .
rotator would constantly flow away from the center throu
linear waves at frequency 2v and the rotating mode would
be unstable. This provides an analytical justification for o
previous numerical observations@8#.

Figure 3 shows the time evolution of an initial conditio
including thevn,1 andvn,2 terms. The parameters are exac
the same as in Fig. 2. Note that the initial condition is n
almost exact, showing the significant improvement brou
by the introduction of the second harmonic 2v in the solu-
tion.

The numerical simulations show therefore that a rat
accurate expression of the rotating modes can be obta
with the lattice Green’s function method. The starting po
is to linearize the equations outside of the site that perfo
a continuous rotation. This approximation is justified by t
qualitative differencebetween the motion of the center an
that of the other sites, as well as by the small amplitude
the vibrations of the off-center sites, even in the case o
rather strong coupling such as the exampleg/J52 chosen to

FIG. 3. Time evolution of an initial condition including th
2v terms. The parameters are the same as in Fig. 2. The soluti
almost exact.~a! Energy densityen . ~b! Angular velocities of the
rotators.
r

t

r
ed
t
s

f
a

illustrate the solution. This leaves onlyonenonlinear equa-
tion to solve, the equation that describes the rotation of
central site. In solving this equation, we again use the f
damental difference between the large amplitude motion
the center and the small vibrations of the other sites, whic
consistent with the linearization already performed. This
lows us to get an analytical expression for the rotation of
central site from the motion of an isolated rotator. Howev
this does not amount to treating the central rotator as i
were really isolated because, although we use foru0(t) the
functional expression of a single rotator, the calculation
the frequencyof the rotation includes the coupling with th
other sites. For a weak coupling case, the frequency cor
tion can be small and this is why the numerical solutio
obtained earlier with a method that ignored it were alrea
rather good@8#. It is, however, important to have a metho
which can treat larger couplings, in particular, because so
real physical systems where rotations have been investig
belong to this class@10#. The motion of the sites away from
the center are calculated by a lattice Green’s function met
which can include successively the main frequency of
central rotation and its harmonics. We have shown that
cluding the second harmonic brings a significant impro
ment. In principle, higher harmonics can be included in
similar way but it would become meaningless owing to t
other approximations performed. Since the solution is
tained by linearizing the equations away from the center
would be straightforward to generalize it to more comp
cated interactions, such as second-neighbor interactions
may be relevant for some real systems. This would sim
require the introduction of the lattice Green’s function app
priate for the new linearized equations. The only fundam
tal restriction on the interaction potential is that it must ha
a finite range and be a periodic function to allow one site
rotate while the neighbors oscillate without causing a m
notonous increase of the coupling energy@8#. The main in-
terest of the Green’s function method is that it is not
stricted to one-dimensional lattices. Lattice Green
functions have been obtained for a large variety of two- a
three-dimensional lattices. Using these Green’s functio
the one-dimensional calculations shown in this paper can
extended to higher dimensions. The only limitation is th
multidimensional Green’s function are generally not know
analytically and consequently the rotating mode solution w
only be known numerically. Work in this direction is i
progress because the simulations of a thermalized la
show that, when rotating modes are thermally created t
are generally localized contrary to vibrational modes wh
show up first as phonons before local breathers can
formed. Moreover as molecular rotations have been dete
experimentally in plastic crystals@9,10#, it seems likely that
nonlinear localized modes can exist in some real material
is therefore interesting to determine their properties.
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